Linear error-block codes

نویسندگان

  • Keqin Feng
  • Lanju Xu
  • Fred J. Hickernell
چکیده

A linear error-block code is a natural generalization of the classical error-correcting code and has applications in experimental design, high-dimensional numerical integration and cryptography. This article formulates the concept of a linear error-block code and derives basic results for this kind of code by direct analogy to the classical case. Some problems for further research are raised. © 2005 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructions and bounds on linear error-block codes

We obtain new bounds on the parameters and we give new constructions of linear error-block codes. We obtain a Gilbert–Varshamov type construction. Using our bounds and constructions we obtain some infinite families of optimal linear error-block codes over F2. We also study the asymptotic of linear error-block codes. We define the real valued function αq,m,a(δ), which is an analog of the importa...

متن کامل

Cyclicity and Decoding of Linear Error-block Codes

Linear error-block codes (LEBC) were introduced in [1]. They are a natural generalization of linear error correcting codes. In this paper, we introduce a notion of cyclic LEBC. In order to allow application in cryptography, especially in a McEliece-like cryptosystem [3], a method of decoding this kind of codes is presented. There exist linear error-block codes with fast decoding algorithms.

متن کامل

Flexible forward error correction codes with application to partial media data recovery

Conventionally, linear block codes designed for packet erasure correction are targeted to recover all the lost source packets per block, when the fraction of lost data is smaller than the redundancy overhead. However, these codes fail to recover any lost packets, if the number of erasures just exceeds the limit for full recovery capability, while it can still be beneficial to recover part of th...

متن کامل

Linear Block Codes: Encoding and Syndrome Decoding

The previous chapter defined some properties of linear block codes and discussed two examples of linear block codes (rectangular parity and the Hamming code), but the approaches presented for decoding them were specific to those codes. Here, we will describe a general strategy for encoding and decoding linear block codes. The decoding procedure we describe is syndrome decoding, which uses the s...

متن کامل

Linear Block Codes: Encoding and Syndrome Decoding

The previous chapter defined some properties of linear block codes and discussed two examples of linear block codes (rectangular parity and the Hamming code), but the approaches presented for decoding them were specific to those codes. Here, we will describe a general strategy for encoding and decoding linear block codes. The decoding procedure we describe is syndrome decoding, which uses the s...

متن کامل

Decoding Error Probability of Binary Linear Block Codes

The performance of maximum-likelihood (ML) decoded binary linear block codes is addressed via the derivation of tightened upper bounds on their decoding error probability. The upper bounds on the block and bit error probabilities are valid for any memoryless, binary-input and outputsymmetric communication channel, and their effectiveness is exemplified for various ensembles of turbo-like codes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Finite Fields and Their Applications

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2006